17445

11718 3 Hours / 100 Marks Seat No.

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answers with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. a) Attempt any SIX of the following:

- (i) State ideal and typical values of
 - 1) slew rate
 - 2) CMRR
- (ii) State the need of signal conditioning (two points)
- (iii) List specification of IC LM 324.
- (iv) Draw circuit diagram of basic differentiator using OP-AMP.
- (v) Draw input and output waveform for active integrator for square wave input.
- (vi) Define the following wr. to filter:
 - 1) Q factor
 - 2) roll off rate

17445

[2]

Marks

- (vii) State the applications of PLL.
- (viii) Define:
 - 1) Output voltage swing
 - 2) SVRR

b) Attempt any TWO of the following:

8

- (i) Draw block diagram of op-amp and describe the functions of constant current source and output stage.
- (ii) Draw ideal and practical voltage transfer characteristics of op-amp.
- (iii) Draw dual input unbalanced output differential amplifier and state ideal characteristics of op-amp.

2. Attempt any FOUR of the following:

- a) Describe virtual ground and virtual short concept with reference to op-amp.
- b) Draw closed loop inverting amplifier using op-amp and derive expression for its gain.
- c) Draw the circuit diagram and output waveform for sine and square wave input for output voltage.

$$V_0 = -\frac{1}{RC} \int_0^t V_{in} dt + C$$

- d) Using OP-AMP, draw the circuit of show the output $V_0 = 5(V_1 4V_2)$ where V_1 and V_2 are input voltages.
- e) If $R_1 = 3 \text{ k}\Omega$, $R_F = 120 \text{ k}\Omega$, $V_{CC} = \pm 15 \text{ V}$ and rms input voltage Vi = 50 mV. Calculate output voltage in inverting and non-inverting Amplifier of op-amp.
- f) Draw and explain Basic Integrator using op-amp.

17445	[3]

Attempt any \underline{FOUR} of the following:

3.

	a)	Draw the circuit diagram of instrumentation amplifier with transducer bridge and describe the operation of it to obtain output voltage.
	b)	Draw and explain the circuit of V to I converter with floating load.
	c)	Draw and describe following op-amp based operation using log and antilog amplifier. $V_0 = V_1 \times V_2$
	d)	Explain working of active negative peak detector with neat circuit and waveforms.
	e)	Describe the operation of ZCD with neat circuit diagram and waveforms.
	f)	Draw circuit diagram and input output waveforms of op-amp based Schmitt trigger.
4.		Attempt any <u>FOUR</u> of the following:
	a)	Describe the operation of non-inverting comparator using op-amp with waveforms.
	b)	Design a first order low pass filter with 10 kH _z cut off frequency and pass band gain 2.
	c)	State two merits and two demerits of active filters.
	d)	Classify filters based on
		(i) Frequency response
		(ii) Components used
		(iii) Frequency range
		(iv) Nature of pass band and stop band.
	e)	Draw the second order high pass filter and describe its operation.
	f)	Draw and explain the circuit of notch (narrow band eject) filter.

Marks

17445		[4]	
		\mathbf{N}	larks
	5.	Attempt any FOUR of the following:	16
	a)	Draw the functional block diagram of Timer IC 555 and explain each block.	
	b)	Draw block diagram and transfer characteristics of PLL.	
	c)	Draw and explain the working of FM demodulator using PLL.	
	d)	Describe the operation of phase detector and role of VCO in PLL.	
	e)	Design an Astable multivibrator using IC 555 timer for a frequency of 2 KHz.	
	f)	Describe the application of IC 555 as touch plate switch with	

6. Attempt any FOUR of the following:

circuit diagram.

- a) Draw a neat circuit diagram of VCO using IC 555 and explain its working.
- b) Draw and explain the working of phase shift oscillator using IC 741.
- c) Draw the circuit diagram of bistable multivibrator using op-amp and describe its working.
- d) Design op-amp based Wein Bridge Oscillator for frequency of 1 KHz.
- e) Draw the circuit of astable multivibrator using IC 555 and describe its working.
- f) Draw circuit diagram of Schmitt trigger using IC 555.